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1. Introduction

The discovery of quasicrystals at NBS in the early
1980s was a surprise [1]. By rapid solidification we had
made a solid that was discretely diffracting like a peri-
odic crystal, but with icosahedral symmetry. It had long
been known that icosahedral symmetry is not allowed
for a periodic object [2].

Periodic solids give discrete diffraction, but we did
not know then that certain kinds of aperiodic objects can
also give discrete diffraction; these objects conform to a
mathematical concept called almost-1 or quasi-periodic-
ity [3]. By definition all quasi-periodic objects diffract
discretely, even though they are not periodic. Quasiperi-
odic objects can have any of the infinite set of point
group symmetries listed as non-crystallographic in the
International Tables for Crystallography [4]; because
they have a single rotation axis of order 5, or one greater
than or equal to 7, or have icosahedral symmetry with its
six intersecting 5-fold axes.

1 For reason discussed below we need not be concerned with almost
periodicity.

Crystal periodicity has been an enormously important
concept in the development of crystallography. Haüy’s
hypothesis that crystals were periodic structures led to
great advances in mathematical and experimental crys-
tallography in the 19th century. The foundation of crys-
tallography in the early nineteenth century was based on
the restrictions that periodicity imposes. Periodic struc-
tures in two or three dimensions can only have 1,2,3,4,
and 6 fold symmetry axes. With no exceptions, each
crystal was found to conform to one of only 32 ways of
combining these symmetry axes, the so-called
“crystallographic” point group symmetries. External
forms of periodic crystals were found to be limited to
combinations of only 47 forms (32 general and 15 spe-
cial) made of symmetrically arranged bounding planes
[5]. Cubes, octahedra, and tetrahedra, for instance, are
examples of special forms belonging to the cubic point
groups, octahedra to point groups 432, m3, and m3m ,
tetrahedra to 23 and 43m , and cubes to all five. In the
nineteenth century each known crystal could be fit into
one (or more) of these 32 point groups by the examina-
tion of its external form. That no additional
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form was found could be taken as proof that all crystals
are periodic. Regular icosahedra and dodecahedra are
special forms of both icosahedral point groups, 235 and
m35. All icosahedral forms have fifteen intersecting 2-
and ten intersecting 3-fold axes, as well as six intersect-
ing non-crystallographic 5-fold axes.

With the assumption of periodicity, the mathematical
aspects of crystallography were set and completely
worked out in the 19th century; that aspect became an
almost closed field. In two and three dimensions the
number of crystal systems, point groups, and plane or
space groups were all enumerated. When the allowed
symmetry axes are combined with translations, it was
shown that there are only 230 space groups in three
dimensions. In two dimensions there are only ten point
groups and seventeen plane groups. An elementary
proof why this listing contains every case allowed by
periodicity and why no others are allowed has long been
available in popular mathematics books [6]. Such com-
plete listing are called catalogs. Each one of the seven-
teen are beautifully illustrated in etchings by M. Escher
[7], as well as Moorish tilings and Turkish carpets.
Extensions were developed for color groups and for
crystallography in higher dimensions. Magnetic struc-
tures and their 1609 Shubnikov space groups are an
example of such an extension in which spins, up or
down (or two colors), are treated as if in a fourth dimen-
sion [8].

With the advent of x-ray diffraction in 1912, external
form became less important. Crystals became defined as
periodic arrangements of identical unit cells. The domi-
nant work of crystallographers became structure deter-
minations by diffraction to find the atom content of one
unit cell. The method depends on an assumed periodic-
ity, and the results usually confirmed it.

2. Discussion

Had we found a crystal? Many definitions of crystals
are in use, some have changed over the centuries. Our
solid was metallic and thus not a “clear transparent
mineral.” It can be grown to form “convex solids en-
closed by symmetrically arranged plane surfaces, inter-
secting at definite and characteristic angles.” According
to the latter of these older definitions, quasicrystals are
crystals. The discovery in 1912 that crystals could dif-
fract x-rays discretely implied either their periodicity or
quasiperiodicity. But as noted above, the subsequent
structure determinations, seem to have led to the accep-
tance of a definition of crystals based on the periodicity
of their internal structure, and one which unnecessarily
ruled out quasiperiodicity. But by 1992 the IUCr Ad

Interim Commission on Aperiodic Crystals wrote “by
‘crystal’ we mean any solid having an essentially dis-
crete diffraction pattern, and by ‘aperiodic crystal’ we
mean any crystal in which three-dimensional lattice pe-
riodicity can be considered to be absent” [9]. By this
latest definition, our solid is a crystal, albeit an aperiodic
one. It is a “quasiperiodic crystal” or quasicrystal for
short, a word coined by Levine and Steinhardt [10].

Our surprising discovery created quite a stir and has
influenced research in many fields, not just crystallogra-
phy, but also materials science, physics, mathematics
[11,12], biology [13,14], and even art. There have been
about 10 000 papers in these fields and many conference
proceedings [15]. Hundreds of quasicrystals have been
found since, some with non-crystallographic axial sym-
metries, pentagonal, octagonal [16], decagonal [17],
and dodecagonal [18]. The crystals with axial sym-
metries are usually periodic along the symmetry axis,
and quasiperiodic in the basal plane.

Quasiperiodicity is a form of aperiodicity that has
many of the attributes of periodicity. As one of their
defining properties, Fourier transforms of quasiperiodic
functions are discrete sets of delta-functions; they can
always be expressed as a series of sine and cosine terms,
but with incommensurate lengths, or a number of arith-
metically independent basis vectors that exceeds the
number of independent variables. Physically, a
quasiperiodic object diffracts to give a pattern with
sharp Bragg spots. But whereas diffraction from a peri-
odic object forms a reciprocal lattice that can be indexed
with a set of d reciprocal basis vectors, where d is the
dimension, the diffraction pattern from a quasiperiodic
object requires a finite number, D > d , independent ba-
sis vectors. An important consequence of this is that any
quasiperiodic function can always be represented as a
periodic function in D dimensions. The aperiodic func-
tion then is a d -dimensional cut of this periodic function.
If D is infinite, the function is called almost periodic. We
have so far not been concerned with almost periodicity,
since in any experiment D is less than or equal to the
number of observed reflections, and thus is finite.

As a simple example consider the one-dimensional
function f (x ) = cos x + cos bx . The Fourier transform
consists of two delta functions. If b is rational, f is
periodic, the two delta functions can be indexed with a
single reciprocal lattice vector. If b is irrational, f is
quasiperiodic; there are two incommensurate lengths in
the Fourier transform; D = 2. The function f (x ,y ) = cos
x + cos y is periodic in two dimensions; the quasiperi-
odic one-dimensional f (x ) is recovered by setting
y = bx . Note that there would be no diffuse scattering
from a quasiperiodic object with f as its density func-
tion.
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Figure 1 shows the first diffraction pattern taken from
a quasicrystal oriented along the 5. Note first the discrete
diffraction and the apparent 10-fold symmetry. Note that
there are no systematic rows; spots twice or three times
as far as a bright spot are much weaker if seen at all.
Note that the ratio of distances in any row is the “golden
mean” � , (� = 2 cos 360 = (1 + �5)/2 = 1.618034...),
and that � occurs naturally in the ratios of the magni-
tudes of vector sums of spots at 360 from one another.
Lastly note that it is impossible to index this pattern with
just three reciprocal lattice vectors.

Our brains often take us to higher dimensions to sim-
plify what is seen. Every triplet of rhombs meeting at a
triple corner in the Penrose tiling in Fig. 2 can look like
a three-dimensional cube, but they are arrayed in several
orientations, and the same rhomb can seem to have dif-
ferent orientations depending on which other two neigh-
boring rhombs it is grouped with. In five dimensions this
tiling finally becomes simple and unambiguous with
each edge along a specific one of five orthogonal axes

and each rhomb becomes a square with a unique orien-
tation. A zigzag path along the lines of the tiling be-
comes a Cartesian path in five dimensions, and a five-
index coordinate system specifies each corner. In five
dimensions the Penrose tiling is confined to the set of all
the lattice points within a slice bounded by two parallel
plane hypersurfaces with irrational orientations.

Since the (111) plane of the primitive cubic lattice is
the two-dimensional hexagonal lattice, the three-dimen-
sional hexagonal lattice can be considered as the (1110)
plane of a four-dimensional cubic lattice [19]. This ra-
tional cut can simplify the understanding of indexing
hexagonal structures. The 4-index specification of a
point �hkil� in a four-dimensional cubic structure can be
used to specify a point in the real three-dimensional
hexagonal crystal. For the point �hkil� to be in the three-
dimensional crystal, it has to be on the (1110) hyper-
plane of the four-dimensional cubic structure, i.e., it has
to have h + k + i = 0. Distances between two such points
can be computed more easily in the 4-index notation.

Fig. 1. The first electron diffraction pattern from a quasicrystal [1]. Note the forbid-
den, 10-fold axis, the absence of systematic rows, and the need for more than three
vectors to index all the spots.
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Fig. 2. Penrose tilings are quasiperiodic. Groups of three tiles around a trivalent point look like
three-dimensional cubes with 90� between line segments, but the orientation of some tiles is
ambiguous. In five dimensions this ambiguity is removed, all line segments can be orthogonal, an
then this entire pattern will fit between two parallel hyperplanes.

A physical example of a two-dimensional quasiperi-
odic object is the surface obtained by cutting a three-di-
mensional crystal by an irrational plane. In this example
the three basis vectors of the periodic three-dimensional
crystal are needed to describe this two-dimensional
quasiperiodic surface. Because the cutting plane is irra-
tional the surface cannot be periodic; it will never go
through exactly the same point in two different unit
cells. Yet when the plane comes close to the same point
in some distant unit cell, another plane through that
point will be very close all the way out to infinity. The
aperiodic structures these planes represent will superim-
pose with little error all the way to infinity. That distance
between the points is an approximate translation vector,
whose existence depends on the specification of how
small a superposition error we require. For a periodic
function the superposition would be exact; the transla-
tion can be repeated indefinitely, and thus form a lattice.
For a quasiperiodic function, repetition of any transla-
tion increases the mismatch, and eventually the error
becomes too large; thus the translations in a quasiperi-
odic structure do not form a lattice, but what is called a

quasilattice. But the existence of these translations is an
important property of quasiperiodic functions and of
quasicrystals.

There are many kinds of defects in periodic structures
that have their analogs in quasiperiodic structures. Let us
begin by examining how defects in a three-dimensional
periodic crystal would appear on a two-dimensional
aperiodic surface. Consider, for example, a metallic
crystal with a CsCl ordering of a body centered cubic
structure to a Pm3m space group with differing occupa-
tion of corners and body centers. Such metallic crystals
commonly have internal boundaries, called antiphase
boundaries, separating domains in which the site occu-
pations are reversed. Such boundaries break the transla-
tional symmetry in an otherwise periodic crystal. Now
consider a cut of such a crystal on an irrational plane.
Although this cut surface is aperiodic, the domain
boundary, a translation defect, would clearly be visible
in the quasiperiodic surface. Dislocation lines in three
dimensions, intersecting the surface, would show up in
the surface as points with associated Burgers vectors.
Since, apart from some small strains, the three-dimen-
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sional structure is perfect away from the dislocation, so
is the quasiperiodic surface. Thus we can detect transla-
tional faults and imperfections in quasiperiodic objects.
Defects in quasicrystals can be understood as defects in
a higher-dimensional periodic crystal. Ordering can oc-
cur in icosahedral quasicrystals, giving rise to antiphase
boundaries that are five-dimensional hypersurfaces in
the six-dimensional crystal and seen as surfaces in the
three-dimensional quasicrystal [20]. This boundary can
also be seen in an imperfect ordering of a Penrose tiling
in which adjacent corners alternate black and white.
Dislocation lines in icosahedral quasicrystals arise from
a four-dimensional defect surface in six dimensions.
Mechanical deformation of quasicrystals is a most inter-
esting subject. Away from the dislocation line, the qua-
sicrystal is perfect, as it would be with dislocations in
periodic crystals.

Although no new symmetry axes appear in going
from two to three dimensions, higher dimensions allow
new symmetries to be consistent with periodicity. For
the axial groups a n -fold symmetry axis first becomes
possible with translational symmetry if the dimensional-
ity equals the totient of n , which is the number of posi-
tive integers less than or equal to n which are relatively
prime (no common factors) to n [21]. This is readily
illustrated for any prime number N , whose totient is
N�1. Since the (11...1) hyperplane in an N -dimensional
isometric lattice has an N -fold axis and the dimension of
that plane is N�1, the rule works for all primes. Two
has a totient of 1; three, four, and six have totients of 2;
none have 3; five, eight, ten, and twelve have 4, etc. Thus
five, eight, ten, and twelve-fold rotations first appear in
four-dimensional periodicity. Icosahedral symmetry
with its intersecting five-fold axes requires six dimen-
sions. Each of the six axes in an isometric six-dimen-
sional lattice meets the five others at right angles, giving
rise to six 10-fold axes. Because there is no point group
with more than one 10-fold axes in three dimensions, the
cuts by irrational planes can only preserve the six 5-fold
(or the six 5-fold inversion) axes of the icosahedral
symmetry.

The study of quasicrystals benefited greatly from
prior research in the mathematical subjects of quasiperi-
odic functions, aperiodic tilings, and hyperspace crystal-
lography. The latter had already been applied in the
study of modulated crystals [22]. Modulated structures
had been found long before the discovery of quasicrys-
tals and had provided some well-documented and under-
stood exceptions to periodic crystals. Because they
could be considered as small incommensurate distor-
tions of periodic structures with a crystallographic point
group, they could be fit into the schemes of crystallogra-
phy. But the incorporation of the modulation wavelength
as an additional length provided an impetus for the

development of hyperspace crystallography which al-
lowed a periodic indexing in the higher dimension.
Modulated structures could then be treated as cuts on
irrational planes, and sometimes as projections of a
slice, of a four or higher dimensional periodic structure.
In an ideal modulated structure, each spot, including the
satellites, is a Bragg peak, indexed with more than three,
usually four, numbers.

Consider an icosahedral structure to be an irrational
cut of a six-dimensional cubic structure with a single
lattice parameter. Indexing requires six numbers, which
is obvious in six dimensions, but is also true for three.
In a three-dimensional indexing using three orthogonal
axes in a Cartesian system, two indexes are required
along each axis, and six number specify each spot,
(h + h'� , k + k'� , 1 + 1'� ) [23]. Indexing of icosahedral
powder patterns is also straightforward; the ambiguities
resulting from superpositions (such as (330) and (411)
in bcc powder patterns) are infrequent. After a lattice
parameter has been selected, indexing for all six num-
bers for single crystals is unambiguous in either three or
six dimensions. Using synchrotron radiation from a sin-
gle AlCuFe quasicrystal, Moss and coworkers have mea-
sured intensities of about 1200 crystallographically dis-
tinct peaks, every peak found using a single icosahedral
(quasi)lattice parameter and a six-parameter icosahedral
indexing [24].

Structure determinations would seem like a hopeless
task. Has one to describe the structure of an aperiodic
solid out to infinity? Because there is periodicity in the
higher dimensions, one needs only to describe the con-
tent of one unit cell (hypercell) in the higher dimen-
sional space. Structure determination in six dimensions
is not very different from what it is in three. Once the
diffraction peaks from single crystals (or lines from
powders) have been indexed in six dimensions, or in
three with six basis vectors, and their corrected intensi-
ties measured, the diffraction pattern can be considered
either on a three-dimensional reciprocal quasilattice or
on a six-dimensional periodic lattice. They are com-
pletely equivalent to another, but standard methods of
crystallographic structure determination for periodic
structures are applicable with little modification to the
six-dimensional data.

Indexing allows Patterson functions to be directly ob-
tainable in three or six dimensions from powder data.
They have the directional information lost in a radial
distribution function. Although the three-dimensional
Patterson functions are aperiodic and complicated with
many peaks, near the origin they bear striking similari-
ties to Patterson functions of related periodic approxi-
mants, large cell periodic crystals with compositions
slightly different from quasicrystals [25]. Thus the local
atom packing of quasicrystals are found to be very
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similar to that of corresponding periodic phases. Patter-
son functions in six dimensions are usually found to be
much simpler, with only a few peaks in each unit cell.
Actual structure determinations have now been carried
out for several quasicrystals with very good residuals
[26,27]. Atom positions are described in the six-dimen-
sional unit cell by three-dimensional surfaces; the inter-
sections of these surfaces periodically repeated in six
dimensions by the irrational three-dimensional plane are
the points that describe the atom positions in the three-
dimensions of quasiperiodic structures. In analogy with
the finding of three dimensional periodic structures by
fitting balls with atomic radii together, plausible
quasiperiodic structures have been constructed by fitting
atomic surfaces into six dimensional unit cells [28].
Another technique exploits the known structures of peri-
odic approximants to convert the structure determina-
tion of the related quasicrystals to the standard crystallo-
graphic structure refinement problem [29].

Periodic crystals can be considered a tiling of unit
cells, each decorated with atoms. Tilings with noncrys-
tallographic symmetries occur in art where the mathe-
maticians’ rules about having a limited number of con-
gruent tiles and leaving no gaps need not be met. The
discovery by mathematicians of aperiodic tilings pre-
ceded that of quasicrystals. Penrose’s tilings with 5-fold
symmetry seem particularly pertinent; they are
quasiperiodic and their diffraction pattern is strikingly
similar to that of the 5-fold zone of icosahedral qua-
sicrystals [30]. By analogy some of the early models
were based on atomic decorations of three-dimensional
versions of Penrose tiles as if each of the different tiles
had the same decoration of filled atom positions.

Three-dimensional structures that give sharp diffrac-
tion are either periodic, if the indexing requires three
basis vectors, quasiperiodic, if the indexing requires a
finite number, more than three, and almost periodic, if
the indexing requires an infinite number. All the mathe-
matical interest had been with almost periodicity; any
quasiperiodic structure is periodic in a higher dimen-
sion.

There was considerable initial resistance to quasicrys-
tals. My own initial reaction was that we were seeing a
quintuple twin, often seen in cubic crystal, but that was
easily ruled out with data presented in our paper.
The angles between the (111) twinning planes
(arccos (1/3) � 70.53�) in cubic crystals are sufficiently
close to 72� that five wedge shaped periodic cubic crys-
tal can fill space with some easily detected strain or
extra material to fill the missing 7.36�. Twins lead to a
superpositioning of five reciprocal lattices, each giving
systematic rows of periodically spaced diffraction spots.
The absence of such systematic rows argues against
twinning. The other possibility was a very large unit cell

with a structure that will give the strange extinctions to
conform to the lack of systematic rows of spots that we
now know is a characteristic of diffraction from qua-
sicrystals. Assuming we had a periodic low-symmetry
crystal, we searched unsuccessfully to fit the data with
cell constants up 2.5 nm. Even though either the twin-
ning or the large unit cell were plausible alternate expla-
nations, Linus Pauling became one of the vocal oppo-
nents by proposing a double-kill, both a large unit cell
and what he called icosatwinning. His initial structure,
based on his often successful method of fitting atoms
together, had a face centered cubic unit cell with a
lattice constant of 2.67 nm, containing 1168 atoms (292
atoms per primitive cell). His claim [31] to fit our pow-
der data led him to write that there was only 1 chance
in 10 000 that this unit cell could be wrong, but he
ignored that his indexing could not fit our published
single crystal pattern. A few years later, he found it
necessary to propose another cell, this time a primitive
cubic structure with a lattice constant of 2.34 nm, con-
taining 820 atoms [32]. Either of his structures would
qualify as an approximant, but to the best of my knowl-
edge, no one has yet reported finding either of them.

Quasicrystals provided win-win opportunities for
crystallographers: If we were mistaken about them, ex-
pert crystallographers could debunk us; if we were right,
here was an opportunity to be a trail blazer. While many
crystallographers worldwide availed themselves of the
opportunity, U.S. crystallographers avoided it, to a large
extent because of Pauling’s influence. The demonstra-
tion by E. Prince that tilings with five-fold symmetry
would give discrete diffraction pattern was a notable
exception [33].

The systems that form quasicrystals additionally often
give periodic crystals with large unit cells, called peri-
odic approximants; sometimes there is even a sequence
of approximants with ever larger cell constants [34]. The
Frank-Kasper phases [35] turned out to be examples of
periodic approximants to quasicrystals that were found
later. Because their diffraction spots are periodically
arrayed, approximants are easily distinguished from qua-
sicrystals. Quintuple twinning of approximants is some-
times seen, as is one case of triple twinning of a qua-
sicrystal, giving an apparent 30-fold diffraction pattern
[36].

Much has been written about why quasicrystals exist.
Although it could not be proven, it was taken as plausi-
ble by many eminent scholars that the lowest energy
configuration of a set of identical atoms or molecules
would be periodic. Similarly it was assumed that the
lowest energy configuration of any mixture of atoms or
molecules would be a periodic arrangement of identical
unit cells forming a stoichiometric compound, or a mix-
ture of such periodic structures. Radin has shown quite
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the opposite; for almost any assumed interaction be-
tween molecular units, the lowest energy is a quasiperi-
odic rather than a periodic structure [37]. He has raised
the question about whether periodic crystals exist be-
cause kinetics are too slow to reach the lowest energy
state, or whether there is something special about the
interactions obtained from quantum mechanics.

To this date all quasicrystals have been metallic. In
metallic structures interatomic distances are deter-
mined, but bond angles do not seem to matter. Local
atomic configurations thus obtained often do not pack
well into periodic structures. Even the simplest one-
component metallic structures seem to favor regular te-
trahedral arrangements that do not fill space. What
other local configuration is needed to fill the gaps, and
does that lead to the orientational order seen in qua-
sicrystals and periodicity or quasiperiodicity? Struc-
tures are determined by a trade-off between low energy
local packing and the occasional higher energy configu-
ration that is geometrically necessary. In order to have a
periodic space-filling arrangement, both the face-cen-
tered and hexagonal close packed structures, for exam-
ple, introduce the octahedra, a configuration which one
expects to have a higher energy. The stable quasicrystals
and the approximants are made of two [38] or more
chemical components, allowing irregular tetrahedra that
have a better chance of filling space. Whether the ad-
justments happen to lead to a periodic approximant or to
a quasicrystal often seems to hinge on small changes in
composition or temperature.

While periodic and quasiperiodic structures always
give discrete diffraction, what other kinds of aperiodic
structures diffract [39]? Mathematicians have found a
veritable “zoo” of orderly dispositions of points in space
[11]. Have any of the many that are not quasiperiodic
been found in nature or made in the laboratory? An
isotropic solid structure was found at NIST in a four-
component system in which quasicrystals exist at some-
what different compositions. But while metallic glasses
usually result from any remaining melt that is cooled too
rapidly to crystallize, this solid grew first as if it were a
crystal, with an interface and at a composition different
from the melt [40]. On continued cooling the melt crys-
tallized around this solid. Is this a physical realization of
one of the many other orderly, arrangements of atoms,
discussed by mathematicians that is not quasiperiodic?

Lattices are considered important factors in many
physical problems. For a long time a three-dimensional
coincidence site lattice was deemed so important that
laws of twinning were based on the existence of a peri-
odic arrangement of a fraction S of lattice sites of both
twins, even if the lattice sites are not occupied by atoms.
Coincidence sites are still considered important in the
theory of grain boundaries, except that the twinner’s S

has become a � . But why should such a three-dimen-
sional lattice be so important? The energy surely de-
pends only on the fit of atoms at the twin interface or
grain boundary. An extreme case is a merohedral twin
for which S = 1 in which the lattice is continuous
through the twin boundary. These twins occur in cases
where the motif has less symmetry than the lattice; the
twin is formed when the motif is rotated by a symmetry
operation of the lattice but not of the motif. We found
the opposite case in an arrangement of several approxi-
mant crystals [41]. Here the icosahedral motif has ap-
proximate symmetry operations that are not present in
the cubic lattice. Quasitwins occur when the lattice ro-
tates by 72� about an irrational �1� 0� axis while the
motif retains its orientation across the grain boundary.
The motif has long range orientational order across the
boundary as it does in quasicrystals, surely for energy
reasons.
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